=谁是谁,为了谁?=
    1:我不知道你是谁,但我知道你为了谁(为了正义隐姓埋名)。
    2:我不知道你是谁,也不知道你为了谁(藏在黑暗中的人都干了些什么)?
    3:我知道你是谁,也知道你为了谁。
    4:我知道你是谁,不知道你为了谁(知人知面不知心)。
    =单片机级数据卡尺=以下内容如果不带前缀,就都是十进制=
    任意一个二进制数,都可以转化为其他进制(计算机中的二进制数,对于小数点,正负,一切非数值的内容,都是数值化了,对于存储而言,所有都是数据,只有对于运算而言,才有数据和指令的区别)。
    使用素数进制(比如2进制,3进制,5进制,一直到499973进制,499979进制)。
    使用进制碰撞方式来统计比如十进制的999,换算成二进制就是1111100111;换算成三进制就是1101000。
    统计结果:二进制中,1出现了(十进制的8次),0出现了(十进制的2次);三进制中,1出现了(十进制的3次),0出现了(十进制的4次);十进制中,9出现了(十进制的3次)
    二进制位数(十进制的10位),三进制位数(十进制的7位),十进制位数(十进制的3位)
    然后找一个大数比如十进制的499979,换算成二进制就是1111010000100001011;换算成三进制就是221101211202。
    统计结果:二进制中,1出现了(十进制的9次),0出现了(十进制的10次);三进制中,2出现了(十进制的5次),1出现了(十进制的5次),0出现了(十进制的2次);十进制中,9出现了(十进制的4次),7出现了(十进制的1次),4出现了(十进制的1次)。
    二进制位数(十进制的19位),三进制位数(十进制的12位),十进制位数(十进制的6位)
    那么,如果是一个很大的数(比如长度为1gb的二进制数据),就可以转换为499979进制。
    然后统计每一位(无视位的先后和大小)中各个不超过进制的数(比如二进制就是0和1,三进制就是0和1和2,十进制就是0和1和2和3和4和5和6和7和8和9;其他进制以此类推)。
    这套素数进制算法,不仅可以用于压缩和解压缩,还能用于快速校验文件是否被篡改过。
    然而,随着进制越来越大,不是每一个数都出现过(比如十进制499979中,可能所有位都只出现过5000个数,那么数数就完全不对称了)(结论:进制越大,同一个数换算后的数位越短,进制越小,同一个数换算后的数位越长)
    =超级电脑的数据卡尺=
    第一种数据卡尺:取素数次方根和有限的小数点后100位数
    获得一个数,直接把该数进行取n次方根。
    比如499979,取平方根的整数部分就是707,取立方根的整数部分就是79。
    一般而言,为了尽可能减少计算量,一般取二次方根都保留小数点后10位数,取三次方根都保留小数点后20位数,取五次方根都保留小数点后30位数(最高取小数点后100位数)。
    想象一下1zb二进制长度的数,取其499979次方根,会等于多少,会不会大于1gb?
    第二种数据卡尺:取任意正整数阶乘去无限接近该数值。
    一般的方法,就是a!+b!+c!……,然后a大于b大于c
    第三种数据卡尺:把数据分段落换算
    比如换算成7进制,然后填写到7乘以7乘以7的数据方格阵列中,每一位占用一个方格,然后先统计填满了多少个数据方格,然后把没填满的数据方格记录下来(一般分为对齐最高位的填充方格位置和对齐最低位的填充方格位置),然后把每一个方格进行统计,比如对齐最高位的填充方格阵列的第20个中,出现了40个1,20个2,10个3,273个0
    比如换算成499979进制,然后填写到499979乘以499979乘以499979的数据方格阵列中,每一位占用一个方格,然后进行统计。
    这套算法的优势:分段落,不需要在1zb数据中进行排列组合运算,而只需要在1gb,1mb,1kb数据中进行排列组合运算。
    当然了,使用多少位进制,都可以记录为数据,使用什么样的数据方格阵列,也可以自定义。
    进制碰撞,校验码碰撞,很快就能确认是不是解压缩出来了源文件。
    第四种数据卡尺:校验码碰撞,没的说,使用1gb校验所有哈希值,比如md5,比如sha256。
    自然语言编程就这样,很容易,很简短,然而如果换算成高级语言,怕是要百万行代码吧?换算成汇编语言,怕事要千万亿行代码吧?之前说过,英文就是52进制(26个英文字母,区分大小写),然而中文就是很高很高的进制。
    写在最后:既然人工智障能够有虚拟机,那么有没有一种可能?创造一个人工智障专用的硬件级虚拟机,然后让人种智障,在虚拟机里面随机变成,比如从最大长度为4kb的程序二进制编程,然后到最大长度为1gb的程序二进制编程,用个位数+1的穷举法来编程,怕不是所有的程序猿都要丢了工作岗位哦。
    有打火机,有核聚变,为何还要去强行追求钻木取火?
    - 肉肉屋

章节目录

脑回路清奇的主角们所有内容均来自互联网,御宅屋只为原作者纯白色科幻宅的小说进行宣传。欢迎各位书友支持纯白色科幻宅并收藏脑回路清奇的主角们最新章节